
Video Capture Documentation
Release 0.0.0.1

roxlu

May 01, 2017

Contents

1 Getting Started 3
1.1 Building the library . 3
1.2 Compiling programs that use Video Capture . 4

2 Programmers Guide 5
2.1 Concepts used in Video Capture . 5
2.2 Getting information about a device . 6
2.3 Opening a device . 6
2.4 Captureing frames . 7
2.5 Closing a device . 7

i

ii

Video Capture Documentation, Release 0.0.0.1

Video Capture is a cross platform library to capture video frames from capture devices. This library uses modern
SDKs/APIs for Mac, Linux and Windows. This library is tested and developed on Win 8.1, Mac 10.9 and Arch Linux
(latest Linux).

Contents:

Contents 1

Video Capture Documentation, Release 0.0.0.1

2 Contents

CHAPTER 1

Getting Started

To compile Video Capture you need to do:

• Make sure that you installed all dependencies

• Clone the Video Capture repository from github

• Compile using the build script

Building the library

Video Capture primary location is Github. To get the code clone the project:

git clone git@github.com:roxlu/video_capture.git

Dependencies

Video Capture main development systems are Mac OS 10.9, Windows 8.1 and Arch Linux. On Linux we use the
Video4Linux API, on Mac we use AVFoundation which are both part of the OS. On Windows you need to download
the latest Windows SDK which provides the MediaFoundation libraries. We use CMake to compile the library and
examples. The Video Capture library contains an OpenGL example. For this OpenGL example we depend on libglfw
3.

Compiling Video Capture on Mac and Linux

For Mac and Linux systems we use the same compile script. To compile follow these steps.

cd build
./release.sh

3

http://www.cmake.org
http://www.glfw.org

Video Capture Documentation, Release 0.0.0.1

Compiling Video Capture on Windows

On windows we use CMake too with a build script. Development uses Microsoft Visual Studio 2012 Express. To
compile on Windows follow these steps.

cd build
build.bat 64 release

Compiling programs that use Video Capture

To compile a program that uses Video Capture make sure to link with the created libvideocapture.a on Mac and Linux
and the libvideocapture.lib file on Windows. The library is installed in the install directory that we create when you
use the above describe build steps.

Also make sure to add a header search path to the headers that we also install into the install directory.

Libraries to link with on Linux

• udev

Libraries to link with on Mac

• CoreFoundation Framework

• AVFoundation framework

• Cocoa

• CoreVideo

• CoreMedia

Libraries to link with on Windows

• Mfplat.lib

• Mf.lib

• Mfuuid.lib

• Mfreadwrite.lib

• Shlwapi.lib

4 Chapter 1. Getting Started

CHAPTER 2

Programmers Guide

In this guide we will create a very simple program that lists the available capture devices, then lists the capabilities of
a device. Once we found a capability that we want to use we open the device and start captureing. Then in a loop we
will flush the buffers of the capture device and let it call our callback function. Before we start we explain a couple of
concepts that we use in Video Capture.

Concepts used in Video Capture

In Video Capture we use a couple of concepts which are shared among most SDKs/APIs we found on OSX, Linux
and Windows.

Device We use the term Device to represent something like a webcam. This Device can capture video in a specific
pixel format.

Pixel format A pixel format describes how the bytes of a video frame are stored. Common pixel formats for Video
Capture are YUYV422, UYVV422 and YUV420P. Some OSes can convert between pixel formats (Mac). See
[libyuvs](https://code.google.com/p/libyuv/wiki/Formats) documentation for some more info on format map-
pings..

Output formats Some SDKs have optimized solutions to decode a video stream you get from a capture device. For
example on Mac you can use the OS to convert a raw YUV stream into a RGB24 stream. Some OSes even have
support to decode H264, so the output formats are also related to codecs and not only pixel formats.

Capability A capability describes a couple of things related to what a device can give you. These are things like
the dimensions of the video frames you receive, the framerate and the pixel format. Video Capture supports
querying the available capabilities of a device on Windows, Mac and Linux.

Settings Video Capture uses a settings object when you want to open a device. The Settings object stores information
like, what device you want to use, what capability and what pixel format you want to use. A settings object is
passed into the open() method of the cature class.

Frame A frame is a helper type we created which gives you information about a pixel format. If necessary you can
use a Frame object to get information about strides, widths, heights, offsets etc.. for planar or non-planar pixel
formats. See the opengl example where we use a Frame to get offets into the YUV420P data on windows.

5

https://code.google.com/p/libyuv/wiki/Formats

Video Capture Documentation, Release 0.0.0.1

Getting information about a device

Before we open a capture device we have to inspect the capabilities of the capture device. Do detect if we found your
capture device you can use the listDevices() function of the Capture class.

Note that all types of the Video Capture library are using the ca namespace. The example below creates a Capture
instance which is the interface to your capture device.

using namespace ca;

Capture capture(fc,NULL);
if(capture.listDevices() < 0) {

printf("Error: cannot list devices.\n");
::exit(EXIT_FAILURE);

}

if(capture.listCapabilities(0) < 0) {
printf("Error: cannot list capabilities for devices 0.\n");
::exit(EXIT_FAILURE);

}

listDevices() will log all the found capture devices to stdout. Each device has a unique number that you will
need to use when opening a device. When a function fails it will return a negative error code, so make sure to check if
the result is < 0 as shown above.

The listCapabilities() function will list all the capabilities of the capture device. A capability describes the
width, height, framerate and pixel format. From this list, pick the capability number that you want to use. The Video
Capture library also provides a findCapability() function that you can use to find a specific capability for a
device. This function will return the index number of the found capability or a negative value if not found.

Some SDKs can convert a pixel format from the capture device into another, maybe more easy to use one. For
example Mac gives you a way to convert from a YUV pixel format to RGB format. Although this is very handy, it’s
not recommended because converting will mostly be done on the CPU (maybe with SIMD) which means you loose
some processing power for other parts of your application. Use the listOutputFormats() to inspect what output
formats are supported.

Opening a device

Once you’ve found what device, capability and output format you want to use you need to create a Settings object
that describes how you want to use the device. Below we show how to create a Settings object and how to set what
capability, device and format we want to use.

using namespace ca;

Settings settings;
settings.device = 0; // Use number 0 from the device list (see listDevices())
settings.capability = 15; // Use number 15 from the capability list (see
→˓listCapabilities())
settings.format = -1 // We're not using any output format conversion (see
→˓listOutputFormats())

Once we have this Settings object we pass it into the open() function of the Capture instance. This will open
the device and set the capability. Make sure to check the return values from open(), when it’s negative an error
occured.

6 Chapter 2. Programmers Guide

Video Capture Documentation, Release 0.0.0.1

using namespace ca;
Capture capture(fc, NULL);

Settings settings;
settings.device = 0;
settings.capability = 15;
settings.format = -1

if(capture.open(settings) < 0)) {
printf("Error: cannot open the capture device.\n");
:exit(EXIT_FAILURE);

}

Captureing frames

After opening the capture device we can start receiving frames. Video Capture uses a callback function that is called
whenever a new frame arrives. Two things are important about this callback function:

• This function may be called from another thread

• This function must return before a new frame arrives

The callback function is passed to the constructor of the Capture class. The interface of this callback function is:

void on_frame(void* bytes, int nbytes, void* user)

• bytes is a pointer to the frame data from the capture device. This maybe be a pointer to planar video data when
e.g. using YUV420P. See the opengl example where we use YUV420P (on Windows).

• nbytes the number of bytes in the frame.

• user a pointer to user data. This is the second parameter to the Capture constructor.

To capture frames you use:

if(capture.start() < 0) {
printf("Error: cannot start captureing.\n");
::exit(EXIT_FAILURE);

}

while(must_capture) {
capture.update();

}

if(capture.stop() < 0) {
printf("Error: cannot stop the capture process.\n");

}

Make sure to call update() at at least the same rate of the used frame rate. Some capture SDKs don’t use async
callbacks for which we need to process any pending frames.

Closing a device

Once you’re done make sure to correctly cleanup and shutdown the capture device. Closing a device will make sure
that all allocated memory gets freed and the device is correctly shutdown. Note: when you don’t close a device on

2.4. Captureing frames 7

Video Capture Documentation, Release 0.0.0.1

Linux, it will continue to be in opened state and can’t be used anymore, before you correctly close it.

if(capture.close() < 0) {
printf("Error: cannot close the capture device.\n");

}

8 Chapter 2. Programmers Guide

	Getting Started
	Building the library
	Compiling programs that use Video Capture

	Programmers Guide
	Concepts used in Video Capture
	Getting information about a device
	Opening a device
	Captureing frames
	Closing a device

